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Abstract: An algebraic technique is presented for the generation of

a 3-D grid about a pointed afterbody with four tapered, finite span fins.

The grid topology is largely determined by a polar type singularity which

passes through the tip parallel to the body centerline. A 3-D grid is

generated by stacking a sequence of 2-D grids on predetermined "blank"

surfaces in the fin and tip regions. On each blank surface a grid of the

C-type is computed by a combination of conformal mapping and transfinite

interpolation. The method is an extension of previous work for the

generation of a 3-D grid about an afterbody with four constant chord,

infinite span fins. An example grid is presented to illustrate the

method and its character " tics are discussed.
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NOMENCLATURE

c airfoil chord length

CR root chord - see Fig. 3

CT tip chord - see Fig. 3

dBOD length of afterbody

dlvL  distance from fin leading edge to initial value surface -

see Fig. 4

ddistance from fin leading edge to initial value surface
on centerline - see Fig. 3

doB distance from tail to outflow surface

dS distance inside airfoil from leading edge to singularity
of unwrapping transformation

dTL distance from trailing edge of fin to tail of afterbody -

see Fig. 3

rB afterbody radius

rBl initial afterbody radius

rM radius of tubular grid surface

roc outer cylinder radius - see Fig. 3

rT tip radius - see Fig. 3

x,r,8 cylindrical coordinates

x,y,z Cartesian coordinates

xR distance from root leading edge to generator line
origin - see Fig. 4

u,v hinge plane coordinates - see Eq. (12)

YM ordinate of fin-tubular surface intersection - see Fig. 5

zF fin airfoil thickness - see Fig. 5

F ,r normalized coordinates used in transfinite interpolation

I -
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Ay parameter in one-dimensional stretching function

p? running arc length of radial curve

€o turning angle at point 0 - see Fig. 9

8T half angle at tail of afterbody

airfoil thickness, fraction of chord length

C normalized polar variable in azimuthal plane - see Eq. (26)

All other quantities are defined in the text.

4
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1. INTRODUCTION

Algebraic methods have become firmly established over the past

decade as an effective means of producing grids about complex

three-dimensional (3-D) geometries. Truly 3-D approaches of this type

all involve some form of interpolation to determine a *rid on the

interior of a given domain which may or may not be divided into simpler

sub-domains. Eriksson [11 has generated a single-block nonorthogonal 3-D

grid using transfinite interpolation where geometric data are specified

only on the boundaries. Since no internal surfaces are specified, grid

quality is controlled, especially near a surface, by incorporating

out-of-surface derivatives. Smith et. al. [2] simplify the 3-D grid

generation process by using the building block concept where several

adjoining or partially overlapping physical grids map to a computational

cube. On the interior of each building block transfinite interpolation

is used to generate the grid. Their treatment extends only to the wing

tips which limits its usefulness. Multi-surface interpolation methods

have been highly developed by Eiseman (3]. In this technique

intermediate control surfaces (not coordinate surfaces) are introduced

between bounding surfaces in order to provide a high degree of control

over mesh properties near boundaries.

The second category of algebraic techniques involves stacking

methods, i.e., the generation of a 3-D grid by a sequence of 2-D

operations. In this procedure a set of surfaces is determined by some

form of mapping and then a grid is generated on each surface in such a

way as to maintain smoothness across surfaces. This approach works well

when the geometry is simple in one of the three spatial dimensions. The

JN
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efforts of Caughey and co-workers [4,5] are representative in this area.

They develop a boundary-conforming coordinate system by a sequence of

conformal and shearing transformations to yield a nearly orthogonal

computational domain. The grid is then generated by simple linear

interpolation. This technique has seen considerable application in

transonic flow calculations over fighter aircraft configurations.

Conformal mapping in conjunction with stacking has also been exploited by

Halsey [6] to generate grids about 3-D nacelles with and without other

aircraft components in close proximity.

One of the advantages of the stacking approach over its 3-D

interpolation counterpart is that appropriate conformal mapping can

be used to eliminate corners at boundaries. Such a technique was

used by Hoffman [7] for a 3-D stacked grid about an afterbody of

* circular cross-section with four constant chord fins. Hoffman's

method consists of applying a hinge point transformation to the

entire boundary in the unwrapping process for a given grid surface.

In this report the method of Ref. 7 is extended to the case of

tapered, finite span fins. The type of afterbody is the same as in

Ref. 7, namely, one of circular cross-section that closes at the tail

point. Gridless surfaces are first determined free of corner

singularities and then a grid is generated on each surface by a sequence

of conformal transformations in conjunction with transfinite

interpolation. The tcpolcgy of this ccnfigur:lt:n "e:nR 7 rn Frnlex

than that of Ref. 7 requires the domain to be liviAci 1 wn regions -

above and below the tip of the fin. The nature of the grid in the region

between the body and tip dictates the introduction of a singularity of

UN.
' 2 ],,) ',-',,' - j .......... ..........."............ '...........-............. -...-..-. ,...... .... .,........-

, - ' "k , , , 0 - ' , .' '•,- ',, , ': -.- ".'..-" , - . . ," ."- . .. . -... . . ."-.-.- ... , '-
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the polar type at the tip. This singularity forms the basis of the

coordinate system for the grid outside the tip. Such singularities are a

necessary occurrence in 3-D grids although they are not restricted to the

polar type. For a discussion of this feature of 3-D grids, see Ref. 1.

2. ANALYSIS

2.1 Geometry of Computational Domain

The geometry for which a surface fitted grid is to be generated is

as follows:

(1) The afterbody is of circular cross-section and has a smooth but

otherwise arbitrary meridian profile that closes at the tail

point.

(2) Four identical finite span fins are mounted on the afterbody at

90 degree intervals with their chord planes passing through the

afterbody centerline. The leading and trailing edges are

straight with only the leading edge having taper. The tip is

formed by revolving the airfoil at the end of the fin about the

tip axis.

(3) The computational domain consists of the region interior to an

outer cylinder of radius rOC and exterior to the afterbody,

bounded upstream and downstream by planes normal to the

afterbody centerline (the initial value and outflow planes).

A schematic of the body-fin geometry and computational domain is

shown in Fig. i, a head-on view showing the coordinate system in the

azimuthal plane appears in Fig. 2 and a meridian plane view of the

configuration showing parameters defining the geometry appears in Fig. 3.

[-i.
. - .. . . . . . - - - - .- . U *. * . -
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Since the fins are identical and equally spaced, there are four planes of

symmetry and hence, only the azimuthal sector - 'r/4 < 8 < 0 needs to be

considered in generating the grid and in the flowfield computation.

2.2 Overall Approach

The grid generation process is divided into two parts. The first

is for the fin (or inner) region which lies within the tip cylinder,

while the second is for the tip (cr outer) region which lies between

the tip cylinder and the outer cylinder. The method used in the inner

region is a direct extension of that in Ref. 7 for a constant chord fin.

"Blank" axisymmetric surfaces (with no grid) are first created which vary

smoothly in the radial direction from the afterbody to the tip cylinder.

On each of these surfaces a C-grid about the fin is then determined by

2-D means with controls to maintain grid smoothness in the radial

direction. In the outer region a coordinate system with a polar

singularity is used to gain maximum grid resolution in the vicinity of

the tip. This type of singularity is also dictated by the nature of the

* grid in the fin region. The polar axis is taken to pass through the tip

centerline and is therefore a generator of the tip cylinder. Blank grid

surfaces (curved radial surfaces) are created which emanate from

* the polar singularity and which have the property of being invariant

with respect to translation along the polar axis. A C-grid around the

tip is then determined by 2-D means on each curved radial surface. The

grids in the outer and inner regions are of course required to be the

same at their common surface, the tip cylinder.



-11-

2.3 Fin Region

Tubular Surfaces

The first step in the grid generation process is the

determination of a set of blank (gridless) surfaces, also called

"tubular" surfaces, between the body and tip cylinder. These

surfaces are generated by computing a set of curves in the meridian

plane using the method of Ref. 7 and then revolving them about the

centerline. Once the intersection of a given surface with the fin is

known, the surface is "unwrapped" in terms of x and e coordinates by

ignoring the radial variation with x of the surface. A C-grid is then

computed in the x-8 plane by using the conformal mapping-transfinite

interpolation procedure described in Ref. 7.

Because of fin taper the computation of the fin-tubular surface

intersection is more complicated than in the constant chord case of Ref.

7. For the tapered case the determination of the intersection (which

-7 yields the distorted airfoil coordinates in the x-G plane for use in

determining the C-grid) proceeds as follows:

As shown in Fig. 4, the fin is defined to originate on the body

centerline and because of its truncated triangular shape has a "virtual"

tip at T', the point where extensions of the leading and trailing edges

intersect. To generate the curve of intersection of the fin with a given

tubular surface, all points defining the intersection are assumed to lie

on generators which are lines passing through T' and intersecting the

centerline at a distance xR from the root leading edge. This artifice

enables the airfoil thickness distribution to be computed only once and

then used for all chord locations because every chord plane distribution

5%44
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is geometrically similar. Taking the origin at the leading edge of the

fin root, the equation of a generator line is

c R XR -
x = xR + YTO ) y,

where

rT (2)

- T R

In applying Eq. (1), the distribution of xR is determined from the unit

chord airfoil distribution XFl by the relation

,R C 'R XFI (3)

The equation of the tubular surface in the meridian plane may be written

as

r = rM(x) (4)

Replacing y in Eq. (1) by rMi the difference (x - xi) is computed for

points on the meridian curve. Then using Lagrange cubic

interpolation, the zero (root) of (x - xi ) is found from which

x of the intersection and rMi are computed. We note that x must be

used in the root finding process rather than y because the y equation

becomes indeterminate at the leading edge.

To determine the appropriate chord length (which enables the airfoil

thickness at the point of intersection to be found) we refer to Fig. 5

which is a sketch of the fin-tubular surface intersection in the

azimuthal plane. Because of the geometric similarity property of all

chord point distributions, we have

.,;,~.,
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zF = c ZFl (5)

where ZF is the airfoil thickness at the intersection point and zFl is

the airfoil thickness for the unit chord distribution. The airfoil

chord, c, is given by

cR= cR - a YM (6)

where YM is the projection of rM on the fin plane of symmetry, and

~cR c T

a = rT (7)

The quantities rM, YM and zF are related by

2 =2 +z2

rM YM +zF

By using Eqs. (5) and (6) to eliminate zF and c, we can solve Eq. (8)

for yM with the following result:

a 2 (ac )2 2 2 22 1 1/2
acRZFl + c )+ (1 + aZ~l) (r - cR ZFl1

YM =  
2 .(9)

a + aZFl

With yM known, c and zF are computed from Eqs. (6) and (5) respectively.

The quantity dIvL, the distance from the initial value line (IVL) to the

fin leading edge required in the C-grid generation step, is given by

d IVL d IVLO+ a y MLE (10)

where dlVLO is the IVL - fin leading edge distance on the centerline and

YMLE is given by Eq. (9) applied at the fin leading edge.

- L- LA-..
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Grid on Tubular Surfaces

Since the procedure used to generate the C-grid on an unwrapped

tubular surface is essentially the same as in Ref. 7, only the outline

of the main steps will be presented. The portions of the original

%; procedure which have been modified for the present application are

described in detail.

Starting in the x-e plane a sequence of conformal transformations

unwraps the airfoil, symmetry lines and initial and outflow lines into a

quadrilateral with slowly varying height. Next, a translation and

rotation of coordinates is made about the image of the airfoil trailing

edge and a hinge point transformation applied to eliminate the corner at

the trailing edge. The boundary in the hinge plane is now smooth with a

slowly vary tangent and is thus suitable for producing a grid in its

interior by interpolation. Transfinite interpolation using cubic

blending functions is used for this task producing a smooth grid

orthogonal at all boundaries. The grid in the x-6 plane is then obtained

by reversing the sequence of transformations. Finally, the grid on the

tubular surface is found by determining by Lagrange interpolation the

tubular radius corresponding to the x-coordinate of each grid point in

the x-9 plane.

Spacing of grid points on the boundaries made up of the stagnation

line, airfoil and wake centerline is determined in physical coordinates

by using one-dimensional stretching functions, as described in Ref. 7.

Grid points on the outflow line are determined in the hinge plane also in

the manner of Ref. 7. Placement of grid points on the initial value line

and 45 degree symmetry line is presently accomplished by requiring points
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on these boundaries in the hinge plane (the north boundary) to be spaced

in the same arc length proportion as points on the south boundary (the

image of the stagnation line, airfoil and wake centerline). The present

method is guaranteed to produce a non-folded grid whereas the older

circular arc method of Ref. 7, which is also applied in the hinge plane,

sometimes produces folding in the vicinity of the stagnation line in the

case of thick airfoils.

The method of locating point K has also been changed. Point K (see

Fig. 6) is the intersection of the grid line emanating from point C (the

intersection of the inflow and 45 degree symmetry lines). In Ref. 7 the

circular arc method was used to locate point K automatically whereas in

the present application point K is specified in physical coordinates as

part of the input. The new procedure provides more flexibility for the

division of grid lines intersecting the airfoil from the initial value

and 45 degree symmetry lines.

2.4 TIP REGION

Curved Radial Surfaces

The topology of the radial curves emanating from the tip polar axis

is illustrated in Fig. 7. The constraints that must be satisfied

are that orthogonality exists at intersections with the outer and 45

degree symmetry boundaries (segments A-E and E-D) and that the curve

*from 0 to E bisects the angle at E. These curves, upon translation in

the x direction, create radial surfaces for the grid in the tip region.

The radial curves are generated by a variant of the conformal

mapping-transfinite interpolation procedure used for the grid on



-16-

tubular surfaces in the fin region. With origin at point E, a hinge

point transformation is applied to straighten out segment A-E-D, viz.

W = Z2 (11)

where

z = x + iy , (12)

w = u + iv (13)

This transformation guarantees that the angle at point E will be

bisected by the line which intersects it. Applying the transformation to

the entire bounding curve O-D-E-A-O produces a three-cornered boundary in

the u-v plane, as illustrated in Fig. 8. Transfinite interpolation with

cubic blending functions is then used to create lines emanating from

point 0 which are normal to A-E-D. Because the north boundary collapses

to point 0 with the result that ('r)o = 0 and (r~q)0 = 0, the transfinite

interpolation relation, Eq. (26) of Ref. 7, reduces to (using

*point-of-compass notation and labeling corners as shown in Fig. 8)

n(, =r) = (C) E(n) + r0 F(n) + r ns()G(n) + r ) H(n)

+ E(C) [rw(n) -rA E(n) - rO F(n) - rEWA G(r) - rw O H(r)

+ F(&) [rE(f) - rD E(n) - r0 F(n) q ED G() - r H r)]

+ G(&) [rw) -r &WA E(n) - _r)rWA G(r)

+ H(C) [r E ( ) - F.D E(rn) - r&ED G(ri) (14)

where E, F, G and H are cubic blending functions given by
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F(u) = u2(3 - 2u)

G(u) =u(1 - u)2i (15)

H(u) = u
2 (u - 1) 

(

E(u) = 1 F(u)

The normalized variables E and n are defined as follows: On segment

A-E-D,

Ei = sli/sitotal , (16)

and on segment A-O,

nj = s2j/S2tota I , (17)

where sli and s2j are the running arc lengths on A-E-D and O-A

respectively, as measured from point A.

The arc length on the various boundaries is computed from the chord

formula using a dense point distribution to obtain as much accuracy as

possible. The desired point distribution on A-E-D, which is much less

dense than that used to determine arc length, is computed using uniform

increments in 0 on A-E and uniform increments in x on E-D (see Fig. 7).

The corresponding sli is then obtained by Lagrange cubic

interpolation on ui from which Ei is computed. The distribution of q

is arbitrary as it is used only to define the radial curves for

later use. The method presently is use is to specify uniform

increments in u on A-O, from which corresponding values of v, x and y are

determined analytically.

The evaluation of the various derivatives in the transfinite

interpolation relation is analogous to that in Ref. 7 with one
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exception. At point 0 the turning angle 00 of C = constant lines,

defined in Fig. 9, is a prescribed function of &. Then at point 0

the unit tangent vector is given by

t 1 ( ) = cos 00 e - sin 0 e (18)

where eu and ev are unit tangent vectors in the u and v directions

respectively.

If A-E-D were a segment of a circle and the radial lines from

point 0 were straight, then 0o and C would be related by

. 0(6) o(0)+j. (19)

Figure 10 shows a typical set of radial curves generated using the

above relation. In the vicinity of O-E folding occurs brought on

by the rapidly changing curvature of A-E-D in the hinge plane near point

E which cannot be handled adequately by transfinite interpolation. This

defect can be cured without changing Eq. (19) by following a strategy

devised by Vinokur & Lombard [81, namely, incorporation of an interior

stretching function in & which produces clustering at point E. We

define:

" = [ ( ) ,(20)

and then perform transfinite interpolation in ( ,r) variables. The

derivatives affected in Eq. (14) are r& and r Which now become

r and r The new derivatives are related to the old by

PXrpe
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-*-A
;,r _: r d (21)

and

r r E (22)
T.9 En dC

The interior stretching function devised by Vinokur [9] is as

follows:

E+ L- sinh-1 [  1- ) sinh (-E Ay)] (23)

where

S11 
+ E (e )

S-A-AY n (24)iA - E(I - e -y)

Then the derivative dE/d&, obtained from Eq. (23), is

i - sinh ( EAy

._ sinE y) [I + (- - 1)2 sinh2  y) (25)

If the dimensionless slope at the inflection point E is SE, i.e.

.4

,E dC E

then SE is found to be related to Ay by the following implicit equation:

( & AY) cosh Ay - 1 + 1/&E
(SE g Ay) "= sh y- I. (26)

EEsinh Ay

Rather than specify SE and solve Eq. (26) for Ay, we take the easier

approach of specifying Ay and solving directly for SE. By trial and

o,..... . ............ ....................... . ,
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error a value of Ay = 8 has been found to produce adequately spaced

radial curves with no folding near point E, as illustrated in Fig. 11.

Grid On Radial Surfaces

In the azimuthal plane, a radial curve may be defined in a

discrete sense by the equations:

y.= y (rj)

= constant, (27)

z. =z(nJ

where the origin is taken at the polar axis through the tip, as shown in

Fig. 11, and 9 is the running arc length of the radial curve. A radial

surface is obtained, as already mentioned, by translating a radial curve

from the initial value surface to the outflow plane. If flattened out,

i.e., plotted as q versus x, it would appear as sketched in Fig. 12. On

each radial surface a C-grid is generated in the x-n plane by conformal

mapping and transfinite interpolation, the same procedure used for the

surfaces of the fin grid.

Before a C-grid can be generated in the x-n plane, ) of the tip

must be determined as a function of x. Since the tip is assumed to

be a half-body of revolution, for a given value of x its radius is

constant. Thus a natural way of determining qtip is to interpolate

for q given r, the polar radius of each point on the radial curve.

Lagrange cubic interpolation is used for this purpose.

Knowing 7max of a radial curve, the equivalent polar angle emax is

computed from

nmax

S max - (28)
max rT

-A -. A-P
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from which the coordinate magnification FM used in computing the C-grid

is determined from

F = (29)
M 8

max

The above definition of FM is dictated by the requirement of grid

compatibility at the tip cylinder for the fin and tip regions. The

magnified coordinates (x,g) are given by:

x = FM(X - dS) + ln 2 , (30)

=F M  , (31)

where dS is the location of the singular point in the unwrapping

transformation (see Eq. (10) of Ref. 7) and is just inside the leading

edge of the airfoil. Thus when e = 8max, 7 = i which is a requirement of

the urwrapping transformation.

Determination of the C-grid on a particular radial surface gives the

x-9 coordinates of each nodal point, from which the y-z coordinates of

the grid are determined by Lagrange cubic interpolation of the points

defining the radial curve, Eq. (27).

5II
' 3. RESULTS AND DISCUSSION

Finite span fin-afterbody grid generation using the present

technique is performed by two computer codes totaling some 4200 FORTRAN

statements. FINGRID generates the grid in the fin region (interior to

the fin cylinder) while TIPGRID generates the grid in the tip region

(between the tip and outer cylinders). Both codes are written in

double precision arithmetic to minimize roundoff error from the many

arithmetical operations required. Calculations are made in terms of

..-.... ...........
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real variables only. At the present time there is no linkage between

the two codes, i.e., the common grid on the tip cylinder is generated

independently by each code. A User's Manual is incorporated in each

FORTRAN listing by way of comment statements at the beginning.

As in Ref. 7, a NACA symmetric four-digit series airfoil was chosen to

represent the fin section. The equation for this profile is, after

slight modification of its original linear term to produce a zero

thickness trailing edge:

ZF = -5r (0.2969 Vx - 0.1281x - 0.3516x 2 + 0.2843x 3 - 0.1015x 4 ) (32)

Because interpolation is used liberally on the airfoil in the grid

generation process, an accurate definition of the thickness distribution,

ZF vs. x, is required. For this purpose 101 points are used with

clustering at the leading edge.

As a test problem to exhibit the characteristics of the method, an

analytical afterbody was chosen, the same as in Ref. 7, given by the

expression

rB (t) = r BF(t) - d BODtan TG(t) (33)

where F and G are cubic blending functions given by Eq. (15), and

x
t dBOD

The particular set of afterbody parameters, used in the test example, is

as follows:

rBl 0.75 , d 2.5 , tan e = 0.50

v .. .' . . , , - , . - . B OD. T .• . - ... " ..



-23-

This set produces a full afterbody profile with a tail half-angle of

26.6 degrees. Other parameters in the example are given in Table 1.

CR cT ddddr rT
R- dBOD dIVLO dOB dTL rOC T

1.3 0.8 2.5 0.3 1.0 0.5 4.0 1.2 0.2

Table 1. Parameters in Example 3-D Geometry.

A meridian plane view of the afterbody-fin geometry for the

example is shown in Fig. 13 along with one intermediate tubular surface.

This figure also contrasts the locus of point K along the fin using the

circular arc method of Ref. 7 and the present method of requiring point K

to lie along a specified fin generator line. The older method allows

point K to migrate too close to the leading edge as the tip is apprcached

which results in a squeezing of grid lines intersecting the fin from the

initial value surface.

Figures 14 - 16 present different perspective views of the body,

intermediate and tip grid surfaces of the example. Also shown is the

outline of the fin. In this example grid lines are clustered at the fin

leading edge, point K, the fin trailing edge and body tail point. Figure

17 is a view of the grid on the fin symmetry plane, fin surface and body

surface. The intent of this figure is to show the smoothness of the grid

in the stacking direction.

Perspective views in the tip region are presented in Figs. 18-20

showing the grid on the tip cylinder, fin plane of symmetry and outflow

i ,
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plane. Nine curved radial surfaces were used in the stacking direction

(azimuthally). Figure 21 shows a view similar to the previous three

except the grid has been truncated in the downstream direction at the

surface through point K.

-\ The grid on the outflow plane and surface through point K is

seen to have a kink at the curve passing through the corner formed by

the intersection of the outer cylinder and 45 degree symmetry plane.

This feature is, unfortunately, an integral part of the grid topology.

Figure 18, a more nearly head on view, clearly shows the nature of the

stacked grid. The skewness of the grid is seen to increase as the kink

is approached and can be attributed to the use of the same clustering

parameters on each C-grid. By varying certain of these parameters

azimuthally the smoothness in the stacking direction should improve.

The procedure in its present form suffers from one other

shortcoming, namely, that due to the simplified tip geometry (a half body

of revolution) surface derivatives across the fin-tip juncture are not

smooth. This defect can be corrected by refining the definition of the

tip geometry and modifying the C-grid accordingly in the tip region.

" .
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UPPER SYMMETRY PLANE

C -rrI14

LOWER SYMMETRY PLANE 71

Figure 6. Computational Domain on Unwrapped Tuhular Surface.
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